Global Asymptotic Stabilization of the Prototypical Aeroelastic Wing Section via Tp Model Transformation

نویسندگان

  • Péter Baranyi
  • Péter Korondi
  • Hideki Hashimoto
چکیده

A comprehensive analysis of aeroelastic systems has shown that these systems exhibit a broad class of pathological response regimes when certain types of non-linearities are included. In this paper, we propose a design method of a state-dependent non-linear controller for aeroelastic systems that includes polynomial structural non-linearities. The proposed method is based on recent numerical techniques such as the Tensor Product (TP) model transformation and the Linear Matrix Inequality (LMI) control design methods within the Parallel Distributed Compensation (PDC) frameworks. In order to link the TP model transformation and the LMI’s in the proposed design method, we extend the TP model transformation with a further transformation. As an example, a controller is derived that ensures the global asymptotic stability of the prototypical aeroelastic wing section via one control surface, in contrast with previous approaches which have achieved local stability or applied additional control actuator on the purpose of achieving global stability. Numerical simulations are used to provide empirical validation of the control results. The effectiveness of the controller design is compared with a former approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TP model transformation based observer design to 2-D Aeroelastic System

Abstract: This paper presents a case study how to apply the recently proposed TP model transformation technique, that has been introduced for nonlinear statefeedback control design, to nonlinear observer design. The study is conducted through an example. This example treats the question of observer design to the prototypical aeroelastic wing section with structural nonlinearity. This type of mo...

متن کامل

Determination of Different Polytopic Models of the Prototypical Aeroelastic Wing Section by TP Model Transformation

The Tensor Product (TP) model transformation is a recently proposed technique for transforming given Linear Parameter Varying (LPV) models into polytopic model form, namely, to parameter varying convex combination of Linear Time Invariant (LTI) models. The main advantage of the TP model transformation is that the Linear Matrix Inequality (LMI) based control design frameworks can immediately be ...

متن کامل

TP Model-based Robust Stabilization of the 3 Degrees-of-Freedom Aeroelastic Wing Section

Active stabilisation of the 2 and 3 degrees-of-freedom (DoF) aeroelastic wind sections with structural nonlinearities led to various control solutions in the recent years. The paper proposes a control design strategy to stabilise the 3 Dof aeroelastic model. It is assumed that the aeroelastic model has uncertain parameters in the trailing edge dynamics and only one state variable, the pitch ang...

متن کامل

Tp Model Transformation in Nonlinear Control Design

This paper proposes a numerical controller design methodology applicable to given explicit models which eider can represent a physical model or are just the outcome of black-box identification (e.g. neural net model). The design method is capable of considering various advantageous control specifications. The paper presents an example with numerical simulations to provide empirical validation o...

متن کامل

Loading Estimation of Flapping Wings under Aeroelastic Effect Using Finite Element Method

The aim of this paper is to provide an aeroelastic computational tool which determines the induced wing loads during flapping flight. For this purpose, a Finite Element (FE) code based on a four-node plate bending element formulation is developed to simulate the aeroelastic behavior of flapping wings in low incompressible flow. A quasi-steady aerodynamic model is incorporated into the aeroelast...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005